A Petri Net Architecture for Real-Time Human Activity Recognition in Work Systems

J.-P. Herrmann, A. Atanasyan, F. Casser, S. Tackenberg, Procedia Computer Science 217 (2023) 1188–199.

Zeitschriftenaufsatz (wiss.) | Veröffentlicht | Englisch
Autor*in
; ; ;
Abstract
Real-time human-centered assistance in industrial processes depends on the individual history of the work person’s activities in the work system and requires adequate methods for tracking the person’s actions. Most research in human activity recognition is based on recognizing actions from video data using computer vision methods. Digital equipment, standardized machine data interfaces, and smart wearable devices extend the possibilities to describe the current state of the work system. Petri nets have already been applied to human activity recognition, however, without the requirement of detecting actions in real-time. This paper proposes a Petri net architecture that enables hierarchical description-based human activity recognition in industrial work processes. We present an extension, a Partitioned Colored Petri Net, based on the colored Petri net formalism that infers activities from state transitions of the work system in real-time. In a case study, we demonstrate the Petri net’s application for an error-based learning system that visualizes error consequences in augmented reality using experimentable digital twins.
Erscheinungsjahr
Zeitschriftentitel
Procedia Computer Science
Band
217
Seite
1188-199
Konferenz
4th International Conference on Industry 4.0 and Smart Manufacturing
Konferenzort
Österreich
Konferenzdatum
02.11.2022 – 04.11.2022
ISSN
ELSA-ID

Zitieren

Herrmann J-P, Atanasyan A, Casser F, Tackenberg S. A Petri Net Architecture for Real-Time Human Activity Recognition in Work Systems. Procedia Computer Science. 2023;217:1188-1199. doi:https://doi.org/10.1016/j.procs.2022.12.317
Herrmann, J.-P., Atanasyan, A., Casser, F., & Tackenberg, S. (2023). A Petri Net Architecture for Real-Time Human Activity Recognition in Work Systems. Procedia Computer Science, 217, 1188–1199. https://doi.org/10.1016/j.procs.2022.12.317
Herrmann J-P et al. (2023) A Petri Net Architecture for Real-Time Human Activity Recognition in Work Systems. Procedia Computer Science 217, 1188–1199.
Herrmann, Jan-Phillip, Alexander Atanasyan, Felix Casser, and Sven Tackenberg. “A Petri Net Architecture for Real-Time Human Activity Recognition in Work Systems.” Procedia Computer Science 217 (2023): 1188–99. https://doi.org/10.1016/j.procs.2022.12.317.
Herrmann, Jan-Phillip, Alexander Atanasyan, Felix Casser und Sven Tackenberg. 2023. A Petri Net Architecture for Real-Time Human Activity Recognition in Work Systems. Procedia Computer Science 217: 1188–199. doi:https://doi.org/10.1016/j.procs.2022.12.317, .
Herrmann, Jan-Phillip ; Atanasyan, Alexander ; Casser, Felix ; Tackenberg, Sven: A Petri Net Architecture for Real-Time Human Activity Recognition in Work Systems. In: Procedia Computer Science Bd. 217. Amsterdam, Elsevier (2023), S. 1188–199
J.-P. Herrmann, A. Atanasyan, F. Casser, S. Tackenberg, A Petri Net Architecture for Real-Time Human Activity Recognition in Work Systems, Procedia Computer Science. 217 (2023) 1188–199.
J.-P. Herrmann, A. Atanasyan, F. Casser, and S. Tackenberg, “A Petri Net Architecture for Real-Time Human Activity Recognition in Work Systems,” Procedia Computer Science, vol. 217, pp. 1188–199, 2023.
Herrmann, Jan-Phillip, et al. “A Petri Net Architecture for Real-Time Human Activity Recognition in Work Systems.” Procedia Computer Science, vol. 217, Elsevier, 2023, pp. 1188–99, doi:https://doi.org/10.1016/j.procs.2022.12.317.
Herrmann, Jan-Phillip et. al. (2023): A Petri Net Architecture for Real-Time Human Activity Recognition in Work Systems, in: Procedia Computer Science 217, S. 1188–199.
Herrmann J-P, Atanasyan A, Casser F, Tackenberg S. A Petri Net Architecture for Real-Time Human Activity Recognition in Work Systems. Procedia Computer Science. 2023;217:1188–99.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Erklärung zum Urheberrecht:
Dieses Dokument ist vom Urheberrecht geschützt [...]

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markierte Publikationen

Open Data ELSA

Suchen in

Google Scholar