Predicting industrial scale cell culture seed trains – considerations of input uncertainty, new process data and prognostic intervals using a Bayesian approach and sequential Bayesian updating
T. Hernández Rodriguez, C. Posch, J. Schmutzhard, J. Stettner, J. Weihs, R. Pörtner, B. Frahm, Predicting Industrial Scale Cell Culture Seed Trains – Considerations of Input Uncertainty, New Process Data and Prognostic Intervals Using a Bayesian Approach and Sequential Bayesian Updating, 2019.
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenz - Poster
| Veröffentlicht
| Englisch
Autor*in
Hernández Rodriguez, TanjaELSA;
Posch, C.;
Schmutzhard, J.;
Stettner, J.;
Weihs, J.;
Pörtner, R.;
Frahm, BjörnELSA
Einrichtung
Erscheinungsjahr
Konferenz
26th Meeting of the European Society for Animal Cell Technology (ESACT): Cell culture technologies: bridging academia and industry to provide solutions for patients
Konferenzort
Copenhagen, Denmark
Konferenzdatum
2019-05-05 – 2019-05-08
ELSA-ID
Zitieren
Hernández Rodriguez T, Posch C, Schmutzhard J, et al. Predicting Industrial Scale Cell Culture Seed Trains – Considerations of Input Uncertainty, New Process Data and Prognostic Intervals Using a Bayesian Approach and Sequential Bayesian Updating.; 2019.
Hernández Rodriguez, T., Posch, C., Schmutzhard, J., Stettner, J., Weihs, J., Pörtner, R., & Frahm, B. (2019). Predicting industrial scale cell culture seed trains – considerations of input uncertainty, new process data and prognostic intervals using a Bayesian approach and sequential Bayesian updating. Presented at the 26th Meeting of the European Society for Animal Cell Technology (ESACT): Cell culture technologies: bridging academia and industry to provide solutions for patients, Copenhagen, Denmark.
Hernández Rodriguez T et al. (2019) Predicting Industrial Scale Cell Culture Seed Trains – Considerations of Input Uncertainty, New Process Data and Prognostic Intervals Using a Bayesian Approach and Sequential Bayesian Updating. .
Hernández Rodriguez, Tanja, C. Posch, J. Schmutzhard, J. Stettner, J. Weihs, R. Pörtner, and Björn Frahm. Predicting Industrial Scale Cell Culture Seed Trains – Considerations of Input Uncertainty, New Process Data and Prognostic Intervals Using a Bayesian Approach and Sequential Bayesian Updating, 2019.
Hernández Rodriguez, Tanja, C. Posch, J. Schmutzhard, J. Stettner, J. Weihs, R. Pörtner und Björn Frahm. 2019. Predicting industrial scale cell culture seed trains – considerations of input uncertainty, new process data and prognostic intervals using a Bayesian approach and sequential Bayesian updating.
Hernández Rodriguez, Tanja ; Posch, C. ; Schmutzhard, J. ; Stettner, J. ; Weihs, J. ; Pörtner, R. ; Frahm, Björn: Predicting industrial scale cell culture seed trains – considerations of input uncertainty, new process data and prognostic intervals using a Bayesian approach and sequential Bayesian updating, 2019
T. Hernández Rodriguez, C. Posch, J. Schmutzhard, J. Stettner, J. Weihs, R. Pörtner, B. Frahm, Predicting industrial scale cell culture seed trains – considerations of input uncertainty, new process data and prognostic intervals using a Bayesian approach and sequential Bayesian updating, 2019.
T. Hernández Rodriguez et al., Predicting industrial scale cell culture seed trains – considerations of input uncertainty, new process data and prognostic intervals using a Bayesian approach and sequential Bayesian updating. 2019.
Hernández Rodriguez, Tanja, et al. Predicting Industrial Scale Cell Culture Seed Trains – Considerations of Input Uncertainty, New Process Data and Prognostic Intervals Using a Bayesian Approach and Sequential Bayesian Updating. 2019.
Hernández Rodriguez, Tanja et. al. (2019): Predicting industrial scale cell culture seed trains – considerations of input uncertainty, new process data and prognostic intervals using a Bayesian approach and sequential Bayesian updating.
Hernández Rodriguez T, Posch C, Schmutzhard J, Stettner J, Weihs J, Pörtner R, et al. Predicting industrial scale cell culture seed trains – considerations of input uncertainty, new process data and prognostic intervals using a Bayesian approach and sequential Bayesian updating. 2019.