Conflict-based Feature Selection for Information Fusion Systems

C.-A. Holst, U. Mönks, V. Lohweg, in: 27. Workshop Computational Intelligence VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA), Dortmund, 2017, pp. 279–295.

Konferenz - Beitrag | Veröffentlicht | Englisch
Abstract
Applying information fusion systems aims at gaining information of higher quality and simultaneously decreasing computational and communicational efforts. An increased availability of sensors in industrial machines, but also in everyday life, results in large amounts of potential features. Each feature entails computational and communicational costs. An information fusion system may not require all features, supported by the available sensors, to fulfil its purpose. Feature selection methods reduce the amount of features with the aim to maintain or even increase performance. This contribution proposes a feature selection approach exploiting the inherent conflict between features and utilising a state-ofthe-art information fusion operator. The performance of the proposed method is evaluated in the scope of a publicly available data set and benchmarked against an established feature selection method. It is shown that the proposed approach is faster and produces more accurate feature subsets containing very few features, although the established method produces slightly better performing subsets for large feature subsets.
Erscheinungsjahr
Seite
279-295
Konferenz
27. Workshop Computational Intelligence
Konferenzort
Dortmund
Konferenzdatum
2017-11-23 – 2017-11-24
ELSA-ID

Zitieren

Holst C-A, Mönks U, Lohweg V. Conflict-based Feature Selection for Information Fusion Systems. In: Dortmund: 27. Workshop Computational Intelligence VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA); 2017:279-295. doi:10.5445/KSP/1000074341
Holst, C.-A., Mönks, U., & Lohweg, V. (2017). Conflict-based Feature Selection for Information Fusion Systems (pp. 279–295). Presented at the 27. Workshop Computational Intelligence , Dortmund: 27. Workshop Computational Intelligence VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA). https://doi.org/10.5445/KSP/1000074341
Holst C-A, Mönks U and Lohweg V (2017) Conflict-Based Feature Selection for Information Fusion Systems. Dortmund: 27. Workshop Computational Intelligence VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA), pp. 279–295.
Holst, Christoph-Alexander, Uwe Mönks, and Volker Lohweg. “Conflict-Based Feature Selection for Information Fusion Systems,” 279–95. Dortmund: 27. Workshop Computational Intelligence VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA), 2017. https://doi.org/10.5445/KSP/1000074341.
Holst, Christoph-Alexander, Uwe Mönks und Volker Lohweg. 2017. Conflict-based Feature Selection for Information Fusion Systems. In: , 279–295. Dortmund: 27. Workshop Computational Intelligence VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA). doi:10.5445/KSP/1000074341, .
Holst, Christoph-Alexander ; Mönks, Uwe ; Lohweg, Volker: Conflict-based Feature Selection for Information Fusion Systems. In: . Dortmund : 27. Workshop Computational Intelligence VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA), 2017, S. 279–295
C.-A. Holst, U. Mönks, V. Lohweg, Conflict-based Feature Selection for Information Fusion Systems, in: 27. Workshop Computational Intelligence VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA), Dortmund, 2017: pp. 279–295.
C.-A. Holst, U. Mönks, and V. Lohweg, “Conflict-based Feature Selection for Information Fusion Systems,” presented at the 27. Workshop Computational Intelligence , Dortmund, 2017, pp. 279–295.
Holst, Christoph-Alexander, et al. Conflict-Based Feature Selection for Information Fusion Systems. 27. Workshop Computational Intelligence VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA), 2017, pp. 279–95, doi:10.5445/KSP/1000074341.
Holst, Christoph-Alexander et. al. (2017): Conflict-based Feature Selection for Information Fusion Systems, in: , Dortmund, S. 279–295.
Holst C-A, Mönks U, Lohweg V. Conflict-based Feature Selection for Information Fusion Systems. In Dortmund: 27. Workshop Computational Intelligence VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA); 2017. p. 279–95.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Erklärung zum Urheberrecht:
Dieses Dokument ist vom Urheberrecht geschützt [...]

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markierte Publikationen

Open Data ELSA

Suchen in

Google Scholar