Feature Fusion to Increase the Robustness of Machine Learners in Industrial Environments

C.-A. Holst, V. Lohweg, in: At - Automatisierungstechnik 67 (10) , De Gruyter, 2019, pp. 853–865.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenz - Beitrag | Englisch
Abstract
Industrial applications put special demands on machine learning algorithms. Noisy data, outliers, and sensor faults present an immense challenge for learners. A considerable part of machine learning research focuses on the selection of relevant, non-redundant features. This contribution details an approach to group and fuse redundant features prior to learning and classification. Features are grouped relying on a correlation-based redundancy measure. The fusion of features is guided by determining the majority observation based on possibility distributions. Furthermore, this paper studies the effects of feature fusion on the robustness and performance of classification with a focus on industrial applications. The approach is statistically evaluated on public datasets in comparison to classification on selected features only.
Erscheinungsjahr
Titel des Konferenzbandes
at - Automatisierungstechnik 67 (10)
Seite
853-865
ELSA-ID

Zitieren

Holst C-A, Lohweg V. Feature Fusion to Increase the Robustness of Machine Learners in Industrial Environments. In: At - Automatisierungstechnik 67 (10) . De Gruyter; 2019:853-865.
Holst, C.-A., & Lohweg, V. (2019). Feature Fusion to Increase the Robustness of Machine Learners in Industrial Environments. In at - Automatisierungstechnik 67 (10) (pp. 853–865). De Gruyter.
Holst C-A and Lohweg V (2019) Feature Fusion to Increase the Robustness of Machine Learners in Industrial Environments. At - Automatisierungstechnik 67 (10) . De Gruyter, pp. 853–865.
Holst, Christoph-Alexander, and Volker Lohweg. “Feature Fusion to Increase the Robustness of Machine Learners in Industrial Environments.” In At - Automatisierungstechnik 67 (10) , 853–65. De Gruyter, 2019.
Holst, Christoph-Alexander und Volker Lohweg. 2019. Feature Fusion to Increase the Robustness of Machine Learners in Industrial Environments. In: at - Automatisierungstechnik 67 (10) , 853–865. De Gruyter.
Holst, Christoph-Alexander ; Lohweg, Volker: Feature Fusion to Increase the Robustness of Machine Learners in Industrial Environments. In: at - Automatisierungstechnik 67 (10)  : De Gruyter, 2019, S. 853–865
C.-A. Holst, V. Lohweg, Feature Fusion to Increase the Robustness of Machine Learners in Industrial Environments, in: At - Automatisierungstechnik 67 (10) , De Gruyter, 2019: pp. 853–865.
C.-A. Holst and V. Lohweg, “Feature Fusion to Increase the Robustness of Machine Learners in Industrial Environments,” in at - Automatisierungstechnik 67 (10) , 2019, pp. 853–865.
Holst, Christoph-Alexander, and Volker Lohweg. “Feature Fusion to Increase the Robustness of Machine Learners in Industrial Environments.” At - Automatisierungstechnik 67 (10) , De Gruyter, 2019, pp. 853–65.
Holst, Christoph-Alexander/Lohweg, Volker (2019): Feature Fusion to Increase the Robustness of Machine Learners in Industrial Environments, in: at - Automatisierungstechnik 67 (10) , S. 853–865.
Holst C-A, Lohweg V. Feature Fusion to Increase the Robustness of Machine Learners in Industrial Environments. In: at - Automatisierungstechnik 67 (10) . De Gruyter; 2019. p. 853–65.

Export

Markierte Publikationen

Open Data ELSA

Suchen in

Google Scholar