Generalisation Approach for Banknote Authentication by Mobile Devices Trained on Incomplete Samples

B.G. Sürmeli, E. Gillich, H. Dörksen, Generalisation Approach for Banknote Authentication by Mobile Devices Trained on Incomplete Samples, Springer Nature Switzerland, Cham, 2023.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzband - Beitrag | Veröffentlicht | Englisch
Herausgeber*in
Abstract
Reliable Banknote Authentication is critical for economic stability. Regarding everyday use, recent studies implemented successful techniques using banknote images taken by mobile phone cameras. One challenge in mobile banknote authentication is that it is impossible to collect images by all series/brands of mobile phones. In this study, classification models are implemented that are able to generalize to the samples from a wide number of mobile phone series even though they are trained with samples from a small group of series. Existing state-of-the-art banknote authentication approaches train a separate model per sub-image of a banknote, using the extracted features of that sub-image. A new approach that trains a single global model on the concatenated features of all the sub-images is presented. Furthermore, ensemble models that combine Linear Discriminant Analysis and Deep Neural Networks are employed in order to maximize the accuracy. Implemented techniques were able to reach up to F1-score of 0.99914 on a Euro banknote data set which contain images from 16 different mobile-phone series. The results also indicate that new global model approach can improve the accuracy of the existing banknote authentication techniques in case of model training with images from restricted/incomplete phone series and brands.
Erscheinungsjahr
Titel Konferenzband
Artificial Neural Networks and Machine Learning - ICANN 2023
Band
14255
Seite
332-343
Konferenz
32nd International Conference on Artificial Neural Networks (ICANN)
Konferenzort
Heraklion, GREECE
Konferenzdatum
2023-09-26 – 2023-09-29
ISSN
eISSN
ELSA-ID

Zitieren

Sürmeli BG, Gillich E, Dörksen H. Generalisation Approach for Banknote Authentication by Mobile Devices Trained on Incomplete Samples. Vol 14255. (Iliadis Lazaros , ed.). Springer Nature Switzerland; 2023:332-343. doi:10.1007/978-3-031-44210-0_27
Sürmeli, B. G., Gillich, E., & Dörksen, H. (2023). Generalisation Approach for Banknote Authentication by Mobile Devices Trained on Incomplete Samples. In Lazaros Iliadis (Ed.), Artificial Neural Networks and Machine Learning - ICANN 2023 (Vol. 14255, pp. 332–343). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-44210-0_27
Sürmeli BG, Gillich E and Dörksen H (2023) Generalisation Approach for Banknote Authentication by Mobile Devices Trained on Incomplete Samples, Iliadis Lazaros (ed.). Cham: Springer Nature Switzerland.
Sürmeli, Baris Gün, Eugen Gillich, and Helene Dörksen. Generalisation Approach for Banknote Authentication by Mobile Devices Trained on Incomplete Samples. Edited by Lazaros Iliadis. Artificial Neural Networks and Machine Learning - ICANN 2023. Vol. 14255. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2023. https://doi.org/10.1007/978-3-031-44210-0_27.
Sürmeli, Baris Gün, Eugen Gillich und Helene Dörksen. 2023. Generalisation Approach for Banknote Authentication by Mobile Devices Trained on Incomplete Samples. Hg. von Lazaros Iliadis. Artificial Neural Networks and Machine Learning - ICANN 2023. Bd. 14255. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland. doi:10.1007/978-3-031-44210-0_27, .
Sürmeli, Baris Gün ; Gillich, Eugen ; Dörksen, Helene ; Iliadis, Lazaros (Hrsg.): Generalisation Approach for Banknote Authentication by Mobile Devices Trained on Incomplete Samples, Lecture Notes in Computer Science. Bd. 14255. Cham : Springer Nature Switzerland, 2023
B.G. Sürmeli, E. Gillich, H. Dörksen, Generalisation Approach for Banknote Authentication by Mobile Devices Trained on Incomplete Samples, Springer Nature Switzerland, Cham, 2023.
B. G. Sürmeli, E. Gillich, and H. Dörksen, Generalisation Approach for Banknote Authentication by Mobile Devices Trained on Incomplete Samples, vol. 14255. Cham: Springer Nature Switzerland, 2023, pp. 332–343. doi: 10.1007/978-3-031-44210-0_27.
Sürmeli, Baris Gün, et al. “Generalisation Approach for Banknote Authentication by Mobile Devices Trained on Incomplete Samples.” Artificial Neural Networks and Machine Learning - ICANN 2023, edited by Lazaros Iliadis, vol. 14255, Springer Nature Switzerland, 2023, pp. 332–43, https://doi.org/10.1007/978-3-031-44210-0_27.
Sürmeli, Baris Gün/Gillich, Eugen/Dörksen, Helene: Generalisation Approach for Banknote Authentication by Mobile Devices Trained on Incomplete Samples, Bd. 14255, hg. von Iliadis, Lazaros , Cham 2023 (Lecture Notes in Computer Science).
Sürmeli BG, Gillich E, Dörksen H. Generalisation Approach for Banknote Authentication by Mobile Devices Trained on Incomplete Samples. Iliadis Lazaros , editor. Artificial Neural Networks and Machine Learning - ICANN 2023. Cham: Springer Nature Switzerland; 2023. (Lecture Notes in Computer Science; vol. 14255).

Export

Markierte Publikationen

Open Data ELSA

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar
ISBN Suche