Linearly Constrained Gaussian Processes with Boundary Conditions

M. Lange-Hegermann, Linearly Constrained Gaussian Processes with Boundary Conditions, MLResearchPress , 2021.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzband - Beitrag | Veröffentlicht | Englisch
Herausgeber*in
;
Abstract
One goal in Bayesian machine learning is to encode prior knowledge into prior distributions, to model data efficiently. We consider prior knowledge from systems of linear partial differential equations together with their boundary conditions. We construct multi-output Gaussian process priors with realizations in the solution set of such systems, in particular only such solutions can be represented by Gaussian process regression. The construction is fully algorithmic via Grobner bases and it does not employ any approximation. It builds these priors combining two parametrizations via a pullback: the first parametrizes the solutions for the system of differential equations and the second parametrizes all functions adhering to the boundary conditions.
Erscheinungsjahr
Titel Konferenzband
24th International Conference on Artificial Intelligence and Statistics (AISTATS)
Band
130
Konferenz
24th International Conference on Artificial Intelligence and Statistics (AISTATS)
Konferenzort
Virtual
Konferenzdatum
2021-04-13 – 2021-04-15
ISSN
ELSA-ID

Zitieren

Lange-Hegermann M. Linearly Constrained Gaussian Processes with Boundary Conditions. Vol 130. (Banerjee A, Fukumizu K, eds.). MLResearchPress ; 2021.
Lange-Hegermann, M. (2021). Linearly Constrained Gaussian Processes with Boundary Conditions. In A. Banerjee & K. Fukumizu (Eds.), 24th International Conference on Artificial Intelligence and Statistics (AISTATS) (Vol. 130). MLResearchPress .
Lange-Hegermann M (2021) Linearly Constrained Gaussian Processes with Boundary Conditions, Banerjee A and Fukumizu K (eds). MLResearchPress .
Lange-Hegermann, Markus. Linearly Constrained Gaussian Processes with Boundary Conditions. Edited by A. Banerjee and K. Fukumizu. 24th International Conference on Artificial Intelligence and Statistics (AISTATS). Vol. 130. Proceedings of Machine Learning Research : PMLR . MLResearchPress , 2021.
Lange-Hegermann, Markus. 2021. Linearly Constrained Gaussian Processes with Boundary Conditions. Hg. von A. Banerjee und K. Fukumizu. 24th International Conference on Artificial Intelligence and Statistics (AISTATS). Bd. 130. Proceedings of machine learning research : PMLR . MLResearchPress .
Lange-Hegermann, Markus ; Banerjee, A. ; Fukumizu, K. (Hrsg.): Linearly Constrained Gaussian Processes with Boundary Conditions, Proceedings of machine learning research : PMLR . Bd. 130 : MLResearchPress , 2021
M. Lange-Hegermann, Linearly Constrained Gaussian Processes with Boundary Conditions, MLResearchPress , 2021.
M. Lange-Hegermann, Linearly Constrained Gaussian Processes with Boundary Conditions, vol. 130. MLResearchPress , 2021.
Lange-Hegermann, Markus. “Linearly Constrained Gaussian Processes with Boundary Conditions.” 24th International Conference on Artificial Intelligence and Statistics (AISTATS), edited by A. Banerjee and K. Fukumizu, vol. 130, MLResearchPress , 2021.
Lange-Hegermann, Markus: Linearly Constrained Gaussian Processes with Boundary Conditions, Bd. 130, hg. von Banerjee, A./Fukumizu, K., o. O. 2021 (Proceedings of machine learning research : PMLR ).
Lange-Hegermann M. Linearly Constrained Gaussian Processes with Boundary Conditions. Banerjee A, Fukumizu K, editors. 24th International Conference on Artificial Intelligence and Statistics (AISTATS). MLResearchPress ; 2021. (Proceedings of machine learning research : PMLR ; vol. 130).

Export

Markierte Publikationen

Open Data ELSA

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar