Extreme Weather Event Triggers Cascade Towards Extreme Turbidity in a Clear-water Lake
P. Kasprzak, T. Shatwell, M.O. Gessner, T. Gonsiorczyk, G. Kirillin, G. Selmeczy, J. Padisák, C. Engelhardt, Ecosystems 20 (2017) 1407–1420.
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz (wiss.)
| Veröffentlicht
| Englisch
Autor*in
Kasprzak, Peter;
Shatwell, TomELSA
;
Gessner, Mark O.;
Gonsiorczyk, Thomas;
Kirillin, Georgiy;
Selmeczy, Géza;
Padisák, Judit;
Engelhardt, Christof

Einrichtung
Abstract
Climate forecasts project a global increase in extreme weather events, but information on the consequences for ecosystems is scarce. Of particular significance for lakes are severe storms that can influence biogeochemical processes and biological communities by disrupting the vertical thermal structure during periods of stratification. An exceptional storm passing over northern Germany in July 2011 provided an opportunity to assess the consequences and underlying mechanisms of such extreme events on the interplay between the physics and ecological characteristics of a deep, nutrient-poor lake. Wind speeds were among the most extreme on record. A suite of variables measured throughout the event consistently indicates that a cascade of processes pushed the clear-water lake into an exceptionally turbid state. Specifically, thermocline deepening by the storm-entrained cyanobacteria of a deep chlorophyll maximum located at about 8 m depth into the surface mixed layer. Released from light limitation, intense photosynthesis of the cyanobacteria boosted primary production, increased algal biomass, raised the pH and thus induced massive calcite precipitation to a level never observed within three decades of lake monitoring. As a consequence, water transparency dropped from 6.5 to 2.1 m, the minimum on record for 40 years, and the euphotic zone shrank by about 8 m for several weeks. These results show that cyanobacterial blooms not only are promoted by climate warming, but can also be triggered by extreme storms. Clear-water lakes developing a deep chlorophyll maximum appear to be particularly at risk in the future, if such events become more intense or frequent.
Erscheinungsjahr
Zeitschriftentitel
Ecosystems
Band
20
Zeitschriftennummer
8
Seite
1407-1420
ISSN
eISSN
ELSA-ID
Zitieren
Kasprzak P, Shatwell T, Gessner MO, et al. Extreme Weather Event Triggers Cascade Towards Extreme Turbidity in a Clear-water Lake. Ecosystems. 2017;20(8):1407-1420. doi:10.1007/s10021-017-0121-4
Kasprzak, P., Shatwell, T., Gessner, M. O., Gonsiorczyk, T., Kirillin, G., Selmeczy, G., Padisák, J., & Engelhardt, C. (2017). Extreme Weather Event Triggers Cascade Towards Extreme Turbidity in a Clear-water Lake. Ecosystems, 20(8), 1407–1420. https://doi.org/10.1007/s10021-017-0121-4
Kasprzak P et al. (2017) Extreme Weather Event Triggers Cascade Towards Extreme Turbidity in a Clear-Water Lake. Ecosystems 20, 1407–1420.
Kasprzak, Peter, Tom Shatwell, Mark O. Gessner, Thomas Gonsiorczyk, Georgiy Kirillin, Géza Selmeczy, Judit Padisák, and Christof Engelhardt. “Extreme Weather Event Triggers Cascade Towards Extreme Turbidity in a Clear-Water Lake.” Ecosystems 20, no. 8 (2017): 1407–20. https://doi.org/10.1007/s10021-017-0121-4.
Kasprzak, Peter, Tom Shatwell, Mark O. Gessner, Thomas Gonsiorczyk, Georgiy Kirillin, Géza Selmeczy, Judit Padisák und Christof Engelhardt. 2017. Extreme Weather Event Triggers Cascade Towards Extreme Turbidity in a Clear-water Lake. Ecosystems 20, Nr. 8: 1407–1420. doi:10.1007/s10021-017-0121-4, .
Kasprzak, Peter ; Shatwell, Tom ; Gessner, Mark O. ; Gonsiorczyk, Thomas ; Kirillin, Georgiy ; Selmeczy, Géza ; Padisák, Judit ; Engelhardt, Christof: Extreme Weather Event Triggers Cascade Towards Extreme Turbidity in a Clear-water Lake. In: Ecosystems Bd. 20. New York, Springer Science and Business Media LLC (2017), Nr. 8, S. 1407–1420
P. Kasprzak, T. Shatwell, M.O. Gessner, T. Gonsiorczyk, G. Kirillin, G. Selmeczy, J. Padisák, C. Engelhardt, Extreme Weather Event Triggers Cascade Towards Extreme Turbidity in a Clear-water Lake, Ecosystems. 20 (2017) 1407–1420.
P. Kasprzak et al., “Extreme Weather Event Triggers Cascade Towards Extreme Turbidity in a Clear-water Lake,” Ecosystems, vol. 20, no. 8, pp. 1407–1420, 2017, doi: 10.1007/s10021-017-0121-4.
Kasprzak, Peter, et al. “Extreme Weather Event Triggers Cascade Towards Extreme Turbidity in a Clear-Water Lake.” Ecosystems, vol. 20, no. 8, 2017, pp. 1407–20, https://doi.org/10.1007/s10021-017-0121-4.
Kasprzak, Peter u. a.: Extreme Weather Event Triggers Cascade Towards Extreme Turbidity in a Clear-water Lake, in: Ecosystems 20 (2017), H. 8, S. 1407–1420.
Kasprzak P, Shatwell T, Gessner MO, Gonsiorczyk T, Kirillin G, Selmeczy G, et al. Extreme Weather Event Triggers Cascade Towards Extreme Turbidity in a Clear-water Lake. Ecosystems. 2017;20(8):1407–20.